Nature-based solutions

Example for a nature-based solution in the area of water resource management: this riparian buffer protects a creek in Iowa, United States from the impact of adjacent land uses

Nature-based solutions (NBS or NbS) is the sustainable management and use of natural features and processes to tackle socio-environmental issues.[1] These issues include for example climate change (mitigation and adaptation), water security, food security, preservation of biodiversity, and disaster risk reduction. Through the use of NBS healthy, resilient, and diverse ecosystems (whether natural, managed, or newly created) can provide solutions for the benefit of both societies and overall biodiversity.[2] The 2019 UN Climate Action Summit highlighted nature-based solutions as an effective method to combat climate change.[3] For example, NBS in the context of climate action can include natural flood management, restoring natural coastal defences, providing local cooling, restoring natural fire regimes.[4]: 310 

For instance, the restoration and/or protection of mangroves along coastlines utilises a nature-based solution to accomplish several goals. Mangroves moderate the impact of waves and wind on coastal settlements or cities[5] and sequester CO2.[6] They also provide nursery zones for marine life that can be the basis for sustaining fisheries on which local populations may depend. Additionally, mangrove forests can help to control coastal erosion resulting from sea level rise. Similarly, green roofs or walls are Nature-based solutions that can be implemented in cities to moderate the impact of high temperatures, capture storm water, abate pollution, and act as carbon sinks, while simultaneously enhancing biodiversity.

NBS are increasingly being incorporated into mainstream national and international policies and programmes (e.g. climate change policy, law, infrastructure investment, and financing mechanisms), with increasing attention being given to NBS by the European Commission since 2013.[7] However, NBS still face many implementation barriers and challenges.[8][9]

  1. ^ Girardin, Cécile A. J.; Jenkins, Stuart; Seddon, Nathalie; Allen, Myles; Lewis, Simon L.; Wheeler, Charlotte E.; Griscom, Bronson W.; Malhi, Yadvinder (2021). "Nature-based solutions can help cool the planet — if we act now". Nature. 593 (7858): 191–194. Bibcode:2021Natur.593..191G. doi:10.1038/d41586-021-01241-2. PMID 33981055.
  2. ^ Eggermont, Hilde; Balian, Estelle; Azevedo, José Manuel N.; Beumer, Victor; Brodin, Tomas; Claudet, Joachim; Fady, Bruno; Grube, Martin; Keune, Hans (2015). "Nature-based Solutions: New Influence for Environmental Management and Research in Europe" (PDF). Gaia - Ecological Perspectives for Science and Society. 24 (4): 243–248. doi:10.14512/gaia.24.4.9. S2CID 53518417. Archived (PDF) from the original on 7 May 2020. Retrieved 24 May 2020.
  3. ^ Environment, U. N. (2019). "Nature-Based Solutions for Climate". UNEP - UN Environment Programme. Retrieved 2024-01-11.
  4. ^ Cite error: The named reference :13 was invoked but never defined (see the help page).
  5. ^ Marois, Darryl E.; Mitsch, William J. (2 January 2015). "Coastal protection from tsunamis and cyclones provided by mangrove wetlands – a review". International Journal of Biodiversity Science, Ecosystem Services & Management. 11 (1): 71–83. Bibcode:2015IJBSE..11...71M. doi:10.1080/21513732.2014.997292. ISSN 2151-3732. S2CID 86554474. Archived from the original on 23 November 2021. Retrieved 5 September 2021.
  6. ^ Inoue, Tomomi (2019), "Carbon Sequestration in Mangroves", Blue Carbon in Shallow Coastal Ecosystems, Singapore: Springer Singapore, pp. 73–99, doi:10.1007/978-981-13-1295-3_3, ISBN 978-981-13-1294-6, S2CID 133839393, archived from the original on 23 November 2021, retrieved 5 September 2021
  7. ^ Faivre, Nicolas; Fritz, Marco; Freitas, Tiago; de Boissezon, Birgit; Vandewoestijne, Sofie (2017). "Nature-Based Solutions in the EU: Innovating with nature to address social, economic and environmental challenges". Environmental Research. 159: 509–518. Bibcode:2017ER....159..509F. doi:10.1016/j.envres.2017.08.032. ISSN 0013-9351. PMID 28886502. S2CID 42573101. Archived from the original on 23 November 2021. Retrieved 5 September 2021.
  8. ^ Wamsler, C.; Wickenberg, B.; Hanson, H.; Alkan Olsson, J.; Stålhammar, S.; Björn, H.; Falck, H.; Gerell, D.; Oskarsson, T.; Simonsson, E.; Torffvit, F. (2020). "Environmental and climate policy integration: Targeted strategies for overcoming barriers to nature-based solutions and climate change adaptation". Journal of Cleaner Production. 247: 119154. doi:10.1016/j.jclepro.2019.119154. ISSN 0959-6526.
  9. ^ Chausson, Alexandre; Turner, Beth; Seddon, Dan; Chabaneix, Nicole; Girardin, Cécile A. J.; Kapos, Valerie; Key, Isabel; Roe, Dilys; Smith, Alison; Woroniecki, Stephen; Seddon, Nathalie (2020-09-09). "Mapping the effectiveness of nature-based solutions for climate change adaptation". Global Change Biology. 26 (11): 6134–6155. Bibcode:2020GCBio..26.6134C. doi:10.1111/gcb.15310. ISSN 1354-1013. PMID 32906226. S2CID 221621517.

© MMXXIII Rich X Search. We shall prevail. All rights reserved. Rich X Search